Cell Phones as a Distributed Platform for Black Carbon Data Collection

Nithya Ramanathan, Martin Lukac, Muvva Ramana, Praveen Siva, Tanveer Ahmed, Abhishek Kar, Ibrahim Rehman, Veerabhadran Ramanathan, Deborah Estrin
UC Los Angeles - CENS, Nexleaf Analytics, UC San Diego, The Energy Resources Institute (TERI)

Project Surya - http://www.projectsurya.org/

Introduction: Black carbon production is a large issue in developing nations

Issues with black carbon:
- **Health concerns**
 Black carbon, a chief component of soot and a part of diesel emissions, is linked with respiratory illnesses.
- **Global warming**
 Black carbon, following carbon dioxide, is the second largest contributor to global warming. However it exists in the atmosphere for a shorter period of time therefore any changes will bring quicker results.

Production of black carbon:
- **Diesel Emissions**
- **Incomplete burning of fossil fuels and biomass**
- Outdated or primitive cooking methods using wood and dung as fuel
- Fires starved of oxygen (a disproportionate amount of fuel to oxygen) which results in an incomplete burn
- Diesel engines (reduced effect by particulate traps)

Problem Description: Developing a new low cost cell phone based sensor

Cell Phone Camera
- **Black Carbon Sensor**
 - Low cost pump

Calibration Chart
- **Reference Template**
 - Spatial Locator

Cell Phone Audio Jack
- **Temperature Sensor**
 - Data
 - Minutes
 - or
 - Txt messages
 - Headset Jack
 - Temperature Sensor

Proposed Solution:

Calibration
- Create filters with known BC Loading (ug/cm²)
- Scan filters with high quality photo scanner
- Extract Red value from scan
- Fit Red value vs. BC Loading
- Select 10 Red values for chart
- Print chart on profiled printer

Extracting BC Concentration
- Photo
- **Color to BC Loading**
 - Extract Red values from filter and reference template
 - Use known BC Loading to create color vs. BC Loading conversion

BC Loading to BC Concentration
- $BC_{conc} \ [\text{ug/m}^3] = \frac{BC_r \ [\text{ug/cm}^2] \times A \ [\text{cm}^2]}{V_f \ [\text{m}^3]}$
- $V_f = F \ [\text{m}^3/\text{min}] \times D \ [\text{min}]$
- Combine BC Loading, flow rate, exposure duration and filter size to obtain BC Concentration

Future Deployments - 2011
- Khairaptur, India - 50 sensors
- Los Angeles, CA - 40 sensors
- Jet Propulsion Lab, CA - 2 sensors
- Environmental Protection Agency, DC - 1 sensor

Results
- Measurements collected in Indian and California
- Validated using two accepted standards
- Measurements with cell phone within 10% of standard methods

Credit: Adam Ferguson

Photo
- Extract Red values from filter and reference template
- Use known BC Loading to create color vs. BC Loading conversion

BC Loading to BC Concentration
- $BC_{conc} \ [\text{ug/m}^3] = \frac{BC_r \ [\text{ug/cm}^2] \times A \ [\text{cm}^2]}{V_f \ [\text{m}^3]}$
- $V_f = F \ [\text{m}^3/\text{min}] \times D \ [\text{min}]$
- Combine BC Loading, flow rate, exposure duration and filter size to obtain BC Concentration

Calibration Curve:
- Recorded PCM peak value vs. Temperature