SensorSafe: privacy-preserving sharing of sensory information for medical studies and healthcare

Haksoo Choi, Max Greenblatt, Zainul Charbiwala, Supriyo Chakraborty, Mani Srivastava

Introduction: Sharing of sensitive sensory information in medical studies and mobile healthcare

Sharing is Useful

- Medical Studies
 - Continuous collection of patient’s physiological signals in their daily life.
 - Sharing of medical sensor data as well as contextual information.

- Mobile Healthcare
 - 24/7 remote patient monitoring
 - Personal healthcare assistance

Problem Description: Balancing individual privacy and information utility

Privacy vs. Utility

- Individual’s Privacy
 - Data Contributors want to control who can access their information and how much of it others can obtain.
 - Data Contributors also want to control where their data are stored.

- Data Utility
 - Medical researcher require a certain quality of data for their studies.
 - To provide a certain level of quality of mobile health services at least some information needs to be shared.

Goals

- Principle of Least Sharing
 - Need to provide mechanisms for sharing only what is needed to achieve a certain utility.

- Behavioral Privacy: beyond privacy of identity
 - Privacy with sensory information
 - Sensory information can be used to infer various behavioral information as well as identity.
 - Need to protect “what you do” as well as “who you are”

Proposed Solution: Data sharing architecture with fine-grained access control, remote data stores, data obfuscation, and utility assessment

SensorSafe Architecture

Key Features

- Fine-Grained Access Control with Privacy Rules
 - Various combination of conditions (data consumer, location, time, sensor, and value) determine access permissions (allow, deny, and modify)
 - User interface for defining privacy rules

- Remote Data Stores
 - Institutional or personal data stores.
 - Point of data storage is closer to data contributors.
 - Efficiently store sensor waveform data.

- Data Obfuscation
 - Performed on remote data stores.
 - Restrict inferences that can be drawn using sensor data.

- Utility Assessment
 - Analyze data contributor’s privacy rules.
 - Compare and match with desired data quality of a certain service.
 - A medical researcher organizes a study and recruit people with proper privacy rules which provide desired utility.

Design Details

- Control Server
 - User authentication and administrative jobs
 - Query processing
 - Privacy rule processing
 - Utility assessment
 - Data visualization
 - Store
 - Privacy rules
 - Remote data store mappings
 - API
 - Query
 - Data upload request
 - Privacy rules

- Remote Data Stores
 - Data representation
 - Wave segments
 - Data obfuscation engine
 - API
 - Data upload/download

- Prototype Implementation
 - Centralized version of SensorSafe
 - Access control and data store

- Planned Evaluation
 - Case studies: conducting medical study, mobile healthcare application
 - User studies: feedback about UI, privacy mechanisms
 - Performance
 - Control Server: central bottleneck. Load balancing.
 - Overhead of query/rule processing on the control server
 - Overhead of data obfuscation on the remote data stores.

Introduction: Sharing of sensitive sensory information in medical studies and mobile healthcare

Privacy vs. Utility

Goals

- Principle of Least Sharing
 - Need to provide mechanisms for sharing only what is needed to achieve a certain utility.

- Behavioral Privacy: beyond privacy of identity
 - Privacy with sensory information
 - Sensory information can be used to infer various behavioral information as well as identity.
 - Need to protect “what you do” as well as “who you are”

Proposed Solution: Data sharing architecture with fine-grained access control, remote data stores, data obfuscation, and utility assessment

SensorSafe Architecture

Key Features

- Fine-Grained Access Control with Privacy Rules
 - Various combination of conditions (data consumer, location, time, sensor, and value) determine access permissions (allow, deny, and modify)
 - User interface for defining privacy rules

- Remote Data Stores
 - Institutional or personal data stores.
 - Point of data storage is closer to data contributors.
 - Efficiently store sensor waveform data.

- Data Obfuscation
 - Performed on remote data stores.
 - Restrict inferences that can be drawn using sensor data.

- Utility Assessment
 - Analyze data contributor’s privacy rules.
 - Compare and match with desired data quality of a certain service.
 - A medical researcher organizes a study and recruit people with proper privacy rules which provide desired utility.

UCLA – UCR – Caltech – USC - UC Merced