Green Systems: From Platform to OS

Zainul Charbiwala
Dustin McIntire
Many shades of Green…

Sensing Application Requirements

- Resource needs of wireless sensor nodes have high dynamic range
 - Sensing tasks require from 10^{-3} to 10^3 MIPS even on the same node
 - Communication requirements across nodes range from 10^{-1} to 10^3 kbps

- No single processor or radio spans this range efficiently
 - A mix of complementary components is better suited
 - Components arranged in a staged or tiered fashion enable selective activation
ASPIRE Staged System

- Stages of complementary components provide high dynamic range of capabilities
 - Analog Signal Processing
 - Low Power Microcontroller
 - High Efficiency Digital Signal Processing
 - Server Side Processing
 - Cross Stage Interaction

- Staged design raises interesting research issues
 - Optimal stage activation policies based on ‘event context’
 - Interconnect architectures for ‘context transfer’ across stages
 - Lowering transition times between stages exchanging ‘context control’
 - Energy aware resource management at OS level
 - Lowering quiescent power consumption
• In an image sensing application, should object recognition be performed on Stage 2 or Stage 3
 – Some results applying SIFT on a Blackfin DSP for Stage 2 and transmitting raw image over radio for Stage 3

Energy and latency when varying arithmetic precision and # of octaves
Exploring Stage Activation Tradeoffs

Energy and latency when varying CPU frequency
(Normalized with respect to transmission)

Energy Aware Platforms - LEAP

- Host Processor Module (HPM)
- Energy Management and Accounting Processor (EMAP2)
- Mini PCI Module (MPM)
- Sensor Interface Module (SIM)
- Low Power Radio Module (LRM)
- CMOS Imager Module (CIM)
etop – Per Process Energy Accounting

Based on well-known “top” Unix program

<table>
<thead>
<tr>
<th>Channel</th>
<th>Current (mA)</th>
<th>Power (mW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>116</td>
<td>384</td>
</tr>
<tr>
<td>SDRAM</td>
<td>12.72</td>
<td></td>
</tr>
<tr>
<td>SRAM</td>
<td>0.91</td>
<td></td>
</tr>
</tbody>
</table>

Real-time display of per-subsystem current/power/energy consumption

Real-time display of per-process energy consumption

Scheduler modifications:
- measure consumption during system/user time
 - Thanos Stathopoulos

- bash:
 - 0.05 Joules in user mode
 - 0.12 Joules in kernel mode
 - Total energy consumption while process was running: 0.17 J
LabVIEW for Energy Aware Systems

- LabVIEW Domain
 - LabVIEW Virtual Instrument Support Layer
 - LabVIEW Embedded Application
 - LabVIEW Embedded Run-Time Engine for LEAP

- Detection Algorithms
 - Hardware Triggers
 - MATLAB Scripts
 - Embedded Solutions

- Mesh Network Routing Protocols
 - CentRoute
 - OLSR

- Energy-Aware Embedded Linux
 - Comm Links
 - LEAP2 Hardware
 - Energy Accounting

- Web Services
 - Apache Web Server
 - SOAP/XML-Based Applications

- Application Domain
 - C/C++
 - Python
 - Scripts
 - Java

- Sensor Network SA Database
 - Surrounding Motes Database
 - Sensors Availabilities
 - Cluster Topology

- Reconfigurable Embedded Solutions

- Connect as an Instrument

- LabVIEW for Energy Aware Systems

- Timothy Chow
UCLA Telehealth: Driver for greener systems

μLEAP
energy-aware
Telehealth Platform
• Lawrence Au

Smart Cane
Training and guidance in fall prevention

Collaboration Sarrafzadeh (CS), Sayed (EE), Fang (Geriatrics)