Bayesian Selection of Non-Faulty Sensors

Kevin Ni and Greg Pottie
University of California, Los Angeles
Motivation

- Sensor networks have been used in environmental monitoring
- We often see sensors failing throughout the deployment of the network
- Faults may be due to power supply problems, problematic wiring, or other unforeseen issues
- We aim to detect these faults without the need for human inference during the deployment to cue action to fix the problem in some way
Design methodology

- In order to determine sensor faults we must consider four issues.
 - We must determine a model of normal sensor behavior
 - We must model or restrict ourselves to a model of the physical phenomenon
 - Determine whether or not a sensor’s behavior conforms with it’s expected behavior as dictated by our models
 - Remedy problems or classify behavior as faulty or acceptable, and update models accordingly
Approach overview

- We seek to resolve at least some of the issues listed in the previous slide
- Currently we lack a fully trusted node for ground truth
- We resort to using an agreement problem combined with a Bayesian selection method
- We use a Bayesian method so that we can include prior knowledge; it also provides for a easy updating mechanism
Problem formulation and assumptions

- We have a set of K sensors deployed across a field as depicted in the figure below.
- Smoothly varying field.
- Initially, we consider only data trends in judging sensor quality.
 - Expect that sensor values move with similar trends.
- Will then consider detection assuming similar data values.
 - Sensor data is clustered and all measuring the same values.
Further assumptions

- Phenomenon smooth in time to allow for use of a linear model
- Faults are relatively persistent
- Gaussian noise model
- No large data gaps
- At least \(\frac{K}{2} \) are not faulty at any given time
- All faulty sensors do not behave as a single correlated process.
System Flow

Phase one
- Linear model calculation
- Window size selection
- Offset bias removal
- Likelihood parameter estimation
- Posterior calculation
- MAP Selection
 - Hysteresis for decision stability

Phase two
- Determination of Fault/non-Fault
- Neyman-Pearson computation
- Likelihood calculation
 - Calculation of model of agreeing Subset
 - Determination of normal sensor behavior model

Restriction to a physical model with assumptions
Phase one: Bayesian detection method to select subset of agreeing sensors
Phase one: Selection of agreeing subset

- Frame the problem as a Maximum a-posteriori probability (MAP) problem:
 \[
 \hat{\phi} = \arg \max_{\phi} P(\phi | \bar{D}, \xi)
 \]

- Select the subset, \(\hat{\phi} \), with the highest posterior probability of being reliable, given our data.

- Search all \(\phi \) of size \(K/2 \) since this is the minimum expected to be non-faulty.

- \(\phi_i \in \{0, 1\} \) represents exclusion and inclusion in the set

- \(P(\phi | \bar{D}, \xi) \) is the posterior probability

- \(\bar{D} \) represents new data

- \(\xi \) represents other background information

- This is a non-polynomial search, but still tractable in reasonably sized networks
Phase one: Implementation

- Recall Bayes rule:

\[P(\phi|D, \xi) = \frac{f(D|\phi, \xi)P(\phi|\xi)}{f(D|\xi)} \]

- We initially set the prior distribution \(P(\phi|\xi) \) to a uniform distribution implying that we do not know what sensors are reliable at system start.

- Priors are updated using the previous algorithm iteration’s posterior distribution \(P(\phi|D, \xi) \).

- Gaussian assumption gives a Gaussian likelihood: \(f(D|\phi, \xi) \).

- The marginal is given by: \(f(D|\xi) = \sum_{\text{all } \phi} f(D|\phi, \xi)P(\phi|\xi) \).
Phase one: Window size selection

- In order to estimate the parameters of the likelihood, we use linear models to model sensor data over a particular window of past data, M.
- Want to choose a good window size that for each sensor:
 - Interpolates data well
 - Predicts the next point well
- We can adaptively select the M, within a given range, such that we choose the window size that has the smallest maximum mean square error across all sensors.
Phase one: Offset bias removal

- Without a strong model of the phenomenon, we assumed that temperature changes are similar across the field.
- We remove offsets in sensor data by subtracting the bias that was derived from the linear model for each sensor from the sensor data.

- Note, under the data trends only test, cases exist where faulty sensors may have similar trends with large offsets.

- To test distance between sensor data, i.e. offsets, we impose the assumption that sensor data is clustered and measuring similar data values.
- We can then apply our algorithm to sensor data by removing the trend component derived from the model from the sensor data, (as in the trend only test).
- If a sensor is marked as faulty in either test, then it is faulty overall.
Phase one: Likelihood parameter estimation

- The likelihood function $f(\vec{D}|\vec{\phi}, \xi)$ may be influenced by many factors in the form of background information.
- $f(\vec{D}|\vec{\phi}, \xi)$ is a joint Gaussian distribution.
- For a subset, $\vec{\phi}$, we only include parameter values for sensors included in that subset in the likelihood function.

- To calculate the likelihood, we must determine $\vec{\mu}$ and Λ.

- Since we assumed local linearity, we use linear models for interpolation and estimation.
- We can use a model derived using data from all other sensors as the expected value, $\vec{\mu}$. With this we can also calculate the covariance Λ.

- With the likelihood parameters, we can now evaluate our MAP criterion.
Phase one: An example

- For an example of a Bayesian selection step, we will compare two subsets where one set includes a faulty sensor. We set the priors to have equal likelihood that these sets are in agreement.
- \(\text{set}_1 = \text{green and red} \)
- \(\text{set}_2 = \text{red and black} \)

We estimate the covariance matrices of these sets as:

\[
\begin{pmatrix}
0.01039 & 0.00803 \\
0.00803 & 0.007033
\end{pmatrix}
\begin{pmatrix}
0.007033 & -0.02535 \\
-0.02535 & 0.10819
\end{pmatrix}
\]

So the likelihood values are:

\[f(D|\text{set}_1) = 9.7547 \text{ and } f(D|\text{set}_2) = 2.6778 \]

So, using uniform priors: \(p(\text{set}_i) = 1/6 \), (6 possible subsets of size K/2 with K=4) and plugging into Bayes rule we get:

\[p(\text{set}_1|D) = 0.362706 \text{ and } p(\text{set}_2|D) = 0.099568 \]

MAP would select \(\text{set}_1 \) over \(\text{set}_2 \) in this case, which is what we expect

These values of \(p(\text{set}_1|D) \) and \(p(\text{set}_2|D) \) are to be used as priors in the next iteration.
Phase one: Hysteresis for decision

- Want to ensure the stability of decisions
- MAP selection may “flip-flop” from subset ϕ_n to subset ϕ_m.
- After a brief moment, MAP switches back to ϕ_n from ϕ_m.
- Want to avoid any difficulty so we include a lag in our decision.

- Note, we are only comparing MAP decisions, and not our final agreeing subset decisions.
Phase two: Classification of all sensors as either faulty or not
Recall: Design methodology

- Originally we stated four issues for detection
 - We must determine a model of normal sensor behavior
 - We must model or restrict ourselves to a model of the physical phenomenon
 - Determine whether or not a sensor’s behavior conforms with it’s expected behavior as dictated by our models
 - Remedy problems or classify behavior as faulty or acceptable, and update models accordingly
- We have selected a sensor subset that we use to determine a model of expected sensor behavior
- Our physical phenomenon model has been limited by our assumptions
Phase two: Judging sensors

- Now we must judge the remaining sensors
- Use likelihood function, $f(D|\phi, \xi)$, which we can normalize, as a natural extension to the Bayesian approach for our metric.
- We assume a Gaussian likelihood function for simplicity

- We can evaluate the likelihood for each sensor in relation to the model for expected sensor behavior

- To smooth wild variations we use the previous M samples for a moving average of the likelihood
Phase two: Judging sensors

- We want to maximize our chances of detection, P_D, of a faulty sensor while keeping the false detection, P_{FA}, below a certain level.
- We apply a simple Neyman-Pearson test to select faulty sensors at each iteration assuming the distribution on the likelihood for “good” sensors is Gaussian.
- In our experiments we set our threshold of P_{FA} to be 0.05.
Results: Simulated data with faulty sensor

- First we would like to see how well our method performs when all sensors are working well, and all assumptions hold relatively true.
- We have four sensors measuring similar data, but with slightly different amplitudes.
- Sensor 4 from we make to be clearly faulty.
- We see what sensors are included in the “agreeing” subset.
Results: Simulated Data with faulty sensor

- Each good sensor has remained under the designed P_{FA} in all cases.
- In the trend only consideration, we note some of the missed detection is from having the slopes both equal zero at the peaks for faulty and non-faulty sensors.
- We see that we increase our fault detection rate to 99.34% when we include the offset, this is because the good sensors tend to match with the assumption of measuring similar data.

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Trend only</th>
<th>Trend+offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0.0089</td>
</tr>
<tr>
<td>3</td>
<td>0.0189</td>
<td>0.0234</td>
</tr>
<tr>
<td>4</td>
<td>0.8201</td>
<td>0.9934</td>
</tr>
</tbody>
</table>
Results: Cold Air Drainage Data

- We applied our algorithm to data collected in the field.
- Sensors are deployed at James Reserve in California measuring temperature and other data.
- One of the sensors is clearly faulty and measuring incorrect data.

- We can see how frequently each sensor is marked as faulty.
Results: Cold Air Drainage Data

- **When considering trend only:**
 - The P_{FA} exceeded design tolerance for sensor 2. The other two good sensors are within design specifications. Probably since this sensor is not usually in the agreeing subset.
 - Overall P_{FA} rates were higher than simulated cases. This indicates inaccuracy in our models.
 - Sensor detection rate was lower than simulated case, but this is expected.

- **When considering trend and offset together:**
 - False detection rate jumps.
 - Detection rate for sensor 4 is very high, and close to 100%, though not as high as in the simulated case.
 - False detection rate is higher likely due to the fact not all sensors are measuring the exact same data.

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Trend only</th>
<th>Trend+offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0186</td>
<td>0.0297</td>
</tr>
<tr>
<td>2</td>
<td>0.0796</td>
<td>0.1478</td>
</tr>
<tr>
<td>3</td>
<td>0.0194</td>
<td>0.0803</td>
</tr>
<tr>
<td>4</td>
<td>0.7589</td>
<td>0.9793</td>
</tr>
</tbody>
</table>
Recall: Design methodology

- Originally we stated four issues for detection
 - We must determine a model of normal sensor behavior
 - We must model or restrict ourselves to a model of the physical phenomenon
 - Determine whether or not a sensor’s behavior conforms with its expected behavior as dictated by our models
 - Remedy problems or classify behavior as faulty or acceptable, and update models accordingly

- We have taken a first attempt at some of these problems
- We seek to improve our performance through further work in a few key areas
- This will eventually allow us to incorporate the final step
Conclusion and Future work

- We have proposed a framework to detect sensor faults online using a Bayesian MAP detection approach.
- We seek to better model data and fault modes in order to reduce false alarm rates.
- We also will improve our Bayesian framework in order to incorporate better prior knowledge on the model parameters.
 - We seek to include long term data or fault behavior in current decisions.
- This will allow us to relax many assumptions and allow for data that is expected to have different offsets and trends.
Thank you!