A framework for symbolic communication in sensor networks

Edgar E. Vallejo
Assistant Professor
Computer Science Department
Monterrey Institute of Technology, Mexico

Slide 2

<table>
<thead>
<tr>
<th>Agenda</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Overview</td>
</tr>
<tr>
<td>2. The model</td>
</tr>
<tr>
<td>3. Simulation experiments</td>
</tr>
<tr>
<td>4. Preliminary results</td>
</tr>
<tr>
<td>5. Next steps</td>
</tr>
<tr>
<td>6. Conclusions</td>
</tr>
</tbody>
</table>
Adaptive language group

Slide 3

- How did language first come into existence?
- What mechanisms underlie the language capacity?
- How can we provide computers or other artifacts with language-like capabilities?

People

Principal investigators:
Charles E. Taylor Edward P. Stabler
Biology, UCLA Linguistics, UCLA

Lab members:
Yoosook Lee Greg Kobele
Yuan Yao Ying Lin
Travis C. Collier Edgar E. Vallejo
Slide 5

Research topics

- Emergence of language
- Language learning
- Language evolution

Slide 6

Methodology

- Language is viewed as a complex adaptive system
- Bottom-up approach
- Computer modelling
Computer modelling of language

1. Population of agents
2. Agent architecture
3. Interaction protocol
4. Measurements for success in communication

Applications

- Natural language processing
- Distributed autonomous vehicles
- Distributed sensors arrays
Why distributed sensor arrays?

- Appropriate domain for validating language theories
- Wide range of emerging applications

Personal research interests

- Lexicon and concept formation
- Language evolution and adaptation
Figure 1: Robot wandering in a room

Table 1: Robot movement data set
Results

<table>
<thead>
<tr>
<th>Behavior</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wall following 1</td>
<td>a</td>
</tr>
<tr>
<td>Wall following 2</td>
<td>a</td>
</tr>
<tr>
<td>Random walking 1</td>
<td>b</td>
</tr>
<tr>
<td>Random walking 2</td>
<td>b</td>
</tr>
</tbody>
</table>

Table 2: Emergent categorization

Language evolution and adaptation

- Language capacity possess an innate component
- Learning modifies the evolutionary trajectories of language
- Learning allows the genetic assimilation of certain language mechanisms
Slide 15

Graph showing frequency in population over generations for evolved strategies:
- Imitators
- Calculators
- Saussurians
- Randoms

Slide 16

Graph showing frequency in population over generations for undetermined traits:
- Undetermined signals
- Undetermined objects
Agenda

1. Overview
2. The model
3. Simulation experiments
4. Preliminary results
5. Next steps
6. Conclusions

Conditions for symbolic communication

- Concept formation
- Symbol grounding
- Symbol acquisition
A sensor network is a 4-tuple $G = \{V, E, P_V, P_E\}$ where:

1. V is a set of nodes
2. $E \subseteq V \times V$ is a set of links
3. P_V is a set of functions related to properties of V
4. P_E is a set of functions related to properties of E

(Zhao and Guibas, 2004)

A node is a 8-tuple $v = \{P, O, C, S, \delta, \phi, \tau, \rho\}$ where:

1. P is set of sensors
2. O is set of feature vectors
3. C is a set of concepts
4. S is a set of symbols
Slide 21

5. $\delta : P \rightarrow O$ is the detection function
6. $\phi : O \rightarrow C$ is the categorization function
7. $\tau : C \rightarrow S$ is the transmission function
8. $\rho : S \rightarrow C$ is the reception function

Slide 22

Successful symbolic communication

A node $v_1 = \{P_1, O_1, C_1, S_1, \delta_1, \phi_1, \tau_1, \rho_1\}$ communicates successfully to a node $v_2 = \{P_2, O_2, C_2, S_2, \delta_2, \phi_2, \tau_2, \rho_2\}$ given a feature vector $o \in O$ if the following conditions are satisfied
Slide 23

1. \(\phi_1(o) = c_i \)
2. \(\tau_1(c_i) = s_i \)
3. \(\rho_2(s_i) = c_j \)
4. \(c_i = c_j \)

Slide 24

Key considerations

- Each node talks only to its neighbors
- Communication is by broadcast
- Node layout follows an arbitrary, but fixed topology
Vector quantization

Figure 2: The vector quantization procedure

Concept formation

Figure 3: Simple competitive learning network
Winner

The *winner* is the concept c_i^* with the weight vector w_i^* that is “closest” to the feature vector o

$$ |w_i^* - o| \leq |w_i - o| \text{ (for all } i) $$

Learning vector quantization

Slide 28

$$ \Delta w_{i^*k} = \begin{cases}
+\eta(o_k - w_{i^*k}) & \text{if communication is successful} \\
-\eta(o_k - w_{i^*k}) & \text{if communication is unsuccessful}
\end{cases} $$

where $\eta \in [0, 1]$ is the learning rate
Slide 29

Figure 4: The learning procedure $t = 1$

Slide 30

Figure 5: The learning procedure $t = 2$
Agenda

1. Overview
2. The model
3. Simulation experiments
4. Preliminary results
5. Next steps
6. Conclusions

Figure 6: The SITEX00 experiment
<table>
<thead>
<tr>
<th>Vehicle</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clutter</td>
<td>Background</td>
</tr>
<tr>
<td>POV</td>
<td>Light Wheel</td>
</tr>
<tr>
<td>HMMWV</td>
<td>Light Wheel</td>
</tr>
<tr>
<td>5-Ton Truck</td>
<td>Heavy Wheel</td>
</tr>
<tr>
<td>Dragon Wagon</td>
<td>Heavy Wheel</td>
</tr>
<tr>
<td>LAV</td>
<td>Heavy Wheel</td>
</tr>
<tr>
<td>AAV</td>
<td>Track</td>
</tr>
</tbody>
</table>

Table 3: SITEX00 vehicles

<table>
<thead>
<tr>
<th>Vehicle</th>
<th>Training</th>
<th>Validation</th>
</tr>
</thead>
<tbody>
<tr>
<td>POV</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>DW</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>LAV</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>AAV</td>
<td>20</td>
<td>10</td>
</tr>
</tbody>
</table>

Table 4: Seismic data sets
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nodes</td>
<td>16-64</td>
</tr>
<tr>
<td>Neighbors</td>
<td>2-8</td>
</tr>
<tr>
<td>Categories</td>
<td>4</td>
</tr>
<tr>
<td>Symbols</td>
<td>4</td>
</tr>
<tr>
<td>Learning rate</td>
<td>0.01-0.1</td>
</tr>
<tr>
<td>Simulation steps</td>
<td>100-2000</td>
</tr>
</tbody>
</table>

Table 5: Parameters for the simulations

Agenda

1. Overview
2. The model
3. Simulation experiments
4. **Preliminary results**
5. Next steps
6. Conclusions
Slide 37

Figure 7: Classification results

Slide 38

<table>
<thead>
<tr>
<th>Vehicle</th>
<th>Training</th>
<th>Validation</th>
</tr>
</thead>
<tbody>
<tr>
<td>POV</td>
<td>90 %</td>
<td>90 %</td>
</tr>
<tr>
<td>DW</td>
<td>55 %</td>
<td>40 %</td>
</tr>
<tr>
<td>LAV</td>
<td>100 %</td>
<td>100 %</td>
</tr>
<tr>
<td>AAV</td>
<td>75 %</td>
<td>70 %</td>
</tr>
</tbody>
</table>

Table 6: Classification
Results

<table>
<thead>
<tr>
<th>Vehicle</th>
<th>False positives</th>
<th>False negatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>POV</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>DW</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>LAV</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>AAV</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 7: Misclassification in validation

Figure 8: Communication results
Limitations

- Large numbers of examples are required for training
- High volumes of sensor data are transmitted during training

Symbol grounding

<table>
<thead>
<tr>
<th>Transmission</th>
<th>Reception</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agent 1</td>
<td></td>
</tr>
<tr>
<td>s_1 s_2 s_3</td>
<td>c_1 c_2 c_3</td>
</tr>
<tr>
<td>c_1 0 0 1</td>
<td>s_1 0 0 1</td>
</tr>
<tr>
<td>c_2 1 0 0</td>
<td>s_2 1 0 0</td>
</tr>
<tr>
<td>c_3 0 1 0</td>
<td>s_3 0 1 0</td>
</tr>
</tbody>
</table>

Agent 2	
s_1 s_2 s_3	c_1 c_2 c_3
c_1 1 0 0	s_1 0 1 0
c_2 0 1 0	s_2 0 0 1
c_3 0 0 1	s_3 1 0 0
Slide 43

Transmission

<table>
<thead>
<tr>
<th></th>
<th>s_1</th>
<th>s_2</th>
<th>s_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>c_2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>c_3</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Reception

<table>
<thead>
<tr>
<th></th>
<th>c_1</th>
<th>c_2</th>
<th>c_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>s_2</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>s_3</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Agent 1

Agent 2

Slide 44

Graph with nodes labeled s_1, s_2, s_3, o_1, o_2, o_3, o_4, s_i, w_ij, c_j, w_jk, o_k.
Saussurean learning

1. Imitate the transmission function of other nodes
2. Adjust the reception function in such a way that a communication to himself would be successful.

Results

Preliminary simulations showed a considerable reduction in communication events required to achieve coordination in communication.
Slide 47

Agenda

1. Overview
2. The model
3. Simulation experiments
4. Preliminary results
5. **Next steps**
6. Conclusions

Slide 48

Next steps

- Classification
 - Conscience mechanisms
 - Supervised learning
- Language
 - Larger lexicon
 - Compositionality
Slide 49

- Other applications
 - Habitat monitoring
 - Localization and tracking
 - Attribute based routing

Slide 50

Agenda

1. Overview
2. The model
3. Simulation experiments
4. Preliminary results
5. Next steps
6. Conclusions
Conclusions

- Meaningful categorization and coordinated symbolic communication can emerge as self-organizing processes in sensor networks
- Symbolic communication holds promise for reducing the bandwidth requirements for sensor networks
- The understanding of the categorization and generalization capabilities of the model requires further investigations

References

Links

- Adaptive Language Group
 http://taylor0.biology.ucla.edu/al

- Collaborative Signal and Information Processing
 http://aicip.ece.utk.edu/research/mufashion.htm

- Sensor Networks Research Group
 http://www.ece.wisc.edu/ sensit/
Acknowledgements

- UC MEXUS
- Richard Brooks
- David Friedlander
- Hairong Qi
- Marco Duarte